3954

Sen Chen

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Accessible or Not? An Empirical Investigation
of Android App Accessibility

, Member, IEEE, Chunyang Chen", Lingling Fan™, Mingming Fan, Xian Zhan*’, and Yang Liu

Abstract—Mobile apps provide new opportunities to people with disabilities to act independently in the world. Following the law of the
US, EU, mobile OS vendors such as Google and Apple have included accessibility features in their mobile systems and provide a set of
guidelines and toolsets for ensuring mobile app accessibility. Motivated by this trend, researchers have conducted empirical studies by
using the inaccessibility issue rate of each page (i.e., screen level) to represent the characteristics of mobile app accessibility. However,
there still lacks an empirical investigation directly focusing on the issues themselves (i.e., issue level) to unveil more fine-grained findings,
due to the lack of an effective issue detection method and a relatively comprehensive dataset of issues. To fill in this literature gap, we first
propose an automated app page exploration tool, named Xbot, to facilitate app accessibility testing and automatically collect accessibility

issues by leveraging the instrumentation technique and static program analysis. Owing to the relatively high activity coverage (around
80%) achieved by Xbot when exploring apps, Xbot achieves better performance on accessibility issue collection than existing testing
tools such as Google Monkey. With Xbot, we are able to collect a relatively comprehensive accessibility issue dataset and finally collect
86,767 issues from 2,270 unique apps including both closed-source and open-source apps, based on which we further carry out an
empirical study from the perspective of accessibility issues themselves to investigate novel characteristics of accessibility issues.
Specifically, we extensively investigate these issues by checking 1) the overall severity of issues with multiple criteria, 2) the in-depth
relation between issue types and app categories, GUI component types, 3) the frequent issue patterns quantitatively, and 4) the fixing
status of accessibility issues. Finally, we highlight some insights to the community and hope to raise the attention to maintaining mobile

app accessibility for users especially the elderly and disabled.

Index Terms—Mobile accessibility, empirical study, automated accessibility testing, Android app, Xbot

1 INTRODUCTION

AS mobile applications (apps) are increasingly embedded
into people’s daily lives, ensuring their accessibility to a
broader range of users has gained increasing attention from
both industry and governments. For example, leading IT
companies (e.g, Apple, Google, IBM, and Microsoft) have
established their accessibility teams [1], [2], [3], [4] and gov-
ernments have established laws to help eliminate barriers in
electronic and information technology for people with dis-
abilities [5], [6]. Although there are many accessibility
guidelines for mobile app development (e.g., [7], [8]), it is
challenging for mobile apps designers and developers who
often neither have disabilities themselves nor have training
in user experience (UX) and accessibility, to figure out how

o Sen Chen is with the College of Intelligence and Computing, Tianjin Uni-
versity, Tianjin 300350, China. E-mail: senchen@tju.edu.cn.

o Chunyang Chen is with the Monash University, Melbourne, VIC 3800,
Australia. E-mail: chunyang.chen@monash.edu.

o Lingling Fan is with the College of Cyber Science, Nankai University,
Tianjin 300350, China. E-mail: linglingfan@nankai.edu.cn.

o Mingming Fan is with The Hong Kong University of Science and Technol-
ogy, Hong Kong. E-mail: mingmingfan@ust.hk.

o Xian Zhan is with The Hong Kong Polytechnic University, Hong Kong.
E-mail: chichoxian@gmail.com.

e Yang Liu is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798.
E-mail: yangliu@ntu.edu.sg.

Manuscript received 27 September 2020; revised 17 April 2021; accepted 12 August
2021. Date of publication 30 August 2021; date of current version 17 October 2022.
(Corresponding authors: Chunyang Chen and Lingling Fan.)

Recommended for acceptance by R. Holmes.

Digital Object Identifier no. 10.1109/TSE.2021.3108162

to discover potential accessibility issues' for a wide range of
disabilities, and apply accessibility guidelines to effectively
address the issues [9], [10]. Furthermore, in practice, many
small start-up companies often have limited, if any, profes-
sional user interface (UI)/UX designers with expertise to
address accessibility related issues [11]. For example, Fig. 1
shows some accessibility issues that frequently occur in
mobile apps, which cause problems to the elderly and dis-
abled (e.g., item label missing [12], [13] causing spoken
errors when using TalkBack [14] for blind users in Fig. 1a),
some issues are even inaccessible to users without disabil-
ities, e.g., low text contrast in Fig. 1h (details in Section 2.2).
To improve app accessibility, some researchers from the
academia and industry both paid more attention to under-
standing the status of app accessibility and mining the char-
acteristics of introduced issues [15], [16], [17], [18], [19] to
reduce accessibility issues. However, the existing static rule-
based checking methods (e.g., Lint [20], Espresso [21], Robo-
lectric [22]) have been demonstrated to be ineffective and
time-consuming for detecting mobile accessibility issues [16],
[17], [19], [23], [24], [25]. On the other hand, some big compa-
nies such as Google provide some accessibility testing tools
(e.g., Google Accessibility Scanner [26] and IBM AbilityLab
Mobile Accessibility Checker [3]) for detecting accessibility
issues on each Ul page of apps, which requires human int-
ervention. To make app accessibility testing tools fully

1. Accessibility issue refers to issues that make apps less accessible
to people with disabilities such as blind users when they are using
mobile phones. Fig. 1 shows some examples of accessibility issues.

0098-5589 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
mailto:senchen@tju.edu.cn
mailto:chunyang.chen@monash.edu
mailto:linglingfan@nankai.edu.cn
mailto:mingmingfan@ust.hk
mailto:chichoxian@gmail.com
mailto:yangliu@ntu.edu.sg

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

(a) Item label

. 2T

(b) Item type label (c) Editable item label (d) Unsupported item type
ST R el aRTE REd e

s o
00s - ot
024 - o R
080 sas

Empty spoken description Read “edit_text” rather TextlnputLayout is not
than “Enter destination” resolvable by access service

Item descriptions (g) Touch target

Read Phone Button Button

(e) Clickable item

Itel Read same “checked” for 3 item(s) Small item

location

(j) Link

0 Check s Chaciiox
o O Comiines Bonon

(h) Text contrast (i) Image contrast

om0 see o

Check it out.

L]
Low image contrast URLSpan uses a relative URL

Low text contrast

Fig. 1. Examples of accessibility issues with brief descriptions.

automated, researchers [17], [19] adopt dynamic app testing
tools (e.g., Google Monkey [27]) to dynamically explore the
app and feed the explored Ul pages to the accessibility test-
ing tools for detecting accessibility issues. Based on the col-
lected accessibility issues, they carry out empirical studies in
terms of the prevalence of accessibility issues. However, the
latest related work [19] acknowledged that existing testing
tool (i.e., Google Monkey) can only achieve a low activity
coverage (around 40%), and they can only obtain a limited
number of issues for each app. Their analysis is based on a
limited dataset for each app, which is enough for the study at
the screen level (i.e., using and measuring the inaccessibility
issue rate of each screen), but hard to reveal more fine-
grained findings at the issue level (i.e., directly focusing on
the issues themselves). Therefore, to empirically investigate
accessibility issues directly, first of all, it is necessary to
simulate user interactions to explore as many app pages as
possible and further collect a large-scale and relatively
comprehensive dataset of app accessibility issues. With such
a dataset, we aim to conduct an empirical study to reveal
more fine-grained insights from the perspective of issues
themselves.

To achieve this goal, two challenges need to be overcome:
(1) First, there lacks an effective tool to automatically
explore app UI pages with high activity coverage. High
activity coverage can help simulate various user interac-
tions. To conduct an empirical investigation of accessibility
issues, it is essential to check as many activities as possible
to collect accessibility issues. (2) Second, there lacks a large-
scale and relatively comprehensive dataset about real-world
app accessibility issues for the further empirical study and
investigation. Enabling app accessibility analysis requires a
comprehensive set of issues including the user interface
screenshots, the detailed accessibility descriptions, the
buggy front-end source code, and issue patches (if any).

To this end, we propose a novel tool named Xbot, to auto-
matically and effectively explore Ul pages to facilitate acces-
sibility testing and collect accessibility issues in apps. It
leverages instrumentation and static program analysis tech-
niques. Xbot is demonstrated to achieve better performance

3955

than the existing data collection methods based on manual
exploration and random testing exploration with Monkey
in recent work [19]. By leveraging Xbot, we automatically
assess 17,417 app pages from 2,270 apps and finally collect
86,767 accessibility issues, which is the largest dataset for
app accessibility until now. We have released it along with
the source code of Xbot on Github: https://github.com/
tjusenchen/Xbot. We then carry out an empirical investiga-
tion of these accessibility issues from different dimensions
by answering the following research questions:

e RQI: Can Xbot outperform the existing methods on
app page exploration and issue collection when con-
ducting accessibility testing?

e RQ2: What is the overall severity status of app acces-
sibility at the issue level for both closed-source and
open-source apps?

e RQ3: What are the in-depth relations between the
accessibility issue types and app category, GUI
component?

e RQ4: What are the quantitative characteristics of spe-
cific issues such as text or image contrast issues?

e RQ5: How many accessibility issues have been fixed
during app version updates?

According to the investigation of app accessibility, we find
that (1) 89% apps are overall suffering from severe accessibil-
ity problems for both open-source and closed-source apps,
with 43 issues for each app and 6.5 issues for each page on
average; (2) most of the accessibility issues remain unfixed
(96%) according to the investigation on the multiple history
versions, which is inconsistent with the previous study (47%
high fixing rate in the previous study versus 4% low fixing
rate in our study), mainly due to the unsteady activity cover-
age of the underlying testing tools used by them. (3) Touch tar-
get, Text contrast, Item label are the top 3 issue types ranked by
the number of issues. 5 types of GUI components (i.e., Text-
View, ImageView, Button, EditText, and ImageButton) are often
associated with accessibility issues; and (4) different issue
types may have different frequency across different app cate-
gories such as the small size of touchable components in shop-
ping apps, thus, app developers should take this feature into
consideration to maintain their own apps” accessibility. More
fine-grained findings can be found in Section 5.

In summary, we make the following contributions:

e A fully automated and effective app UI exploration
tool” for dynamically scanning mobile app accessi-
bility issues and collecting a relatively comprehen-
sive dataset of issues for further studies.

e A comparative study to demonstrate the better per-
formance on accessibility issue collection of our tool
with others such as manual exploration and the exist-
ing dynamic methods by leveraging Google Monkey.

e An in-depth and empirical study of accessibility
issues based on our collected large-scale dataset,
which unveils insights for the community to better
understand the characteristics of issues and further
improve mobile apps” accessibility.

e A large-scale and reusable dataset [28] including
86,767 issues from 2,270 apps and their metadata

2. https:/ /github.com/tjusenchen /Xbot

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tjusenchen/Xbot
https://github.com/tjusenchen/Xbot
https://github.com/tjusenchen/Xbot

3956

(e.g., issue descriptions), which enables the commu-
nity to further advance mobile app accessibility
research. Meanwhile, the source code of Xbot is also
released for the community.

2 PRELIMINARY

Apart from the 15% population with disabilities who were
born blind, or lost fine motor skills in an accident, most peo-
ple may also have a short-term disability at some time that
makes it difficult to use their mobile devices. For example,
someone cannot use their hands because they are carrying a
wiggly child, have experienced difficulties using the phone
while wearing gloves when it is cold outside, or maybe have
a hard time distinguishing items on the screen when it is
bright outside. With so much of the population experiencing
decreased vision, hearing, mobility, and cognitive function,
developers should do their best to give everyone the best
experience in their apps. The UN Convention on the Rights
of Persons with Disabilities recognizes access to information
and communications technologies, including the mobile
apps, as a basic human right [29] and social justice [30].

In this section, we briefly introduce the definition of
accessibility and the app accessibility issue types that
detected by Google Accessibility Test Framework [31] and
Google Accessibility Scanner [26].

2.1 Accessibility Guidelines

W3C (World Wide Web Consortium), the main interna-
tional standards organization for the World Wide Web has
very clear web content accessibility guidelines (WCAG) [32]
for developing accessible websites which can be accessed
by users with disabilities. Based on the web accessibility,
they further develop the accessibility standards for mobile
applications [33] by considering mobile characteristics such
as touch screens, small screen size, usages in different set-
tings like bright sunlight, etc. In addition to general accessi-
bility guidelines, researchers have proposed accessibility
guidelines for special populations, such as people with
visual impairments [34], people with hearing impairments
[35], people with Aphasia [36], or older adults [37].

At the same time, as the primary organizations that facili-
tate mobile technology and the app marketplace, Google
and Apple also release their accessibility guidelines [38],
SDKs [31], and testing suites [39] for mobile apps on
Android and iOS platforms. Despite the importance of these
guidelines, the guidelines are difficult for app designers or
developers to comprehend and implement into app
design [40]. As a result, there is a need to facilitate the evalu-
ation of accessibility issues of mobile apps using the
guidelines.

2.2 App Accessibility Issues

Following the accessibility guidelines provided by Google,
we identify 10 kinds of accessibility issues. We briefly
describe each issue type and provide real examples in Fig. 1
to illustrate what real accessibility issues are like in user
interface pages.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

e Item label in Fig. 1la means views that a screen
reader could focus and that have an empty spo-
ken description.

e [Item type label in Fig. 1b means Views with a redun-
dant description.

e Editable item label in Fig. 1c means EditTexts and edit-
able TextViews that have a non-empty contentDe-
scription, thus a screen reader may read this
attribute instead of the editable content when the
user is navigating.

e Unsupported item type in Fig. 1d means item types
that are not supported by accessibility services.

o Clickable item in Fig. le means more than one item
share the same on-screen location.

e [tem description in Fig. 1f means more than one item
share the same speakable text.

e Touch target in Fig. 1g means clickable and long-click-
able Views that are smaller than 48dp x 48dp in
either dimension.

e Text contrast in Fig. 1h means texts with a contrast
ratio lower than 3.0 between the text color and back-
ground color.

e Image contrast in Fig. 1i means images with a contrast
ratio lower than 3.0 between the foreground and
background color.

e Link in Fig. 1j means URLSpan does not use an abso-
lute URL.

3 RELATED WORK

In this section, we introduce related work on app accessibil-
ity testing and existing empirical studies on mobile app
accessibility.

3.1 Mobile Accessibility Testing

Mobile apps have become a vital part of our day-to-day lives
and are facing fierce competition. If the app is not easy to use
(inaccessible), then users would probably abandon it and
look for another app with similar functionality. On the other
hand, for people with disabilities, the phenomenon is even
more severe. Therefore, the accessibility testing to reduce
accessibility problems in mobile apps is necessary and
important. Although there has been research work investi-
gating mobile apps testing methods [27], [41], [42], mobile
app accessibility testing is studied to a lesser extent.
Informed by a recent survey study that provides an overview
of available tools for detecting accessibility issues [43] and
other related studies on accessibility testing [20], [44], we cat-
egorize accessibility testing related methods into two catego-
ries (i.e., static and dynamic mobile accessibility testing).

3.1.1 Static Accessibility Testing

Android Lint [20] is a static code analyzer which is a part of
Android Studio IDE [45]. It can report the errors such as
missing translation, layout performance problems, and also
accessibility problems like missing content descriptions.
However, this method has been demonstrated to be ineffective for
detecting mobile accessibility issues [19], [23], [24], [25]. Other
testing tools such as Espresso [21] and Robolectric [22] can
be used to detect accessibility issues. But these tools require
developers to manually specify the testing cases and also

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

embed the specific APIs into their apps which significantly
increase developers” workload. Developers can also check
the properties of GUI components after obtaining the layout
of the user interface pages, or requires developers to interact
with the accessibility tool to get the results. For example, the
developers can use the screen reader (e.g., TalkBack [14] for
Android, VoiceOver [46] for i0S) to read the screen content
and interact with their apps by certain gestures to check the
app accessibility for users with vision impairment. They
may also ask users with motor issues to check if they can
easily reach all functionalities within the app. Although such
manual exploration can mimic the real user experience, it is time-
consuming and labor-intensive. Apart from these static testing
tools, some work focused on detecting specific types of
accessibility issues (e.g., item label missing) by leveraging
deep learning algorithms [12].

3.1.2 Dynamic Accessibility Testing

Some tools are also released for assisting developers with
accessibility testing via manual exploration of screens/Uls.
Android Ul Automator Viewer [47] provides a convenient
GUI to scan and analyze the user interface components cur-
rently displayed on an Android device. Accessibility Scan-
ner [26] is another tool released by Google for identifying
accessibility issues within the current screen. However, the
problem of these tools is that developers must activate the tool on
the device in each screen of the app to get the results [19]. It
means that it still requires manual exploration of the app,
which is time-consuming and may also miss some function-
alities of the apps (low activity coverage). That is also why
few apps adopt these tools when developing their apps [18].

To overcome the limitations of testing tools, Eler et al. [23]
developed a model to automatically generate testing cases
specifically for accessibility testing. Similarly, to carry out a
study of accessibility issues, Alshayban et al. leveraged the
Android app testing tool, Google Monkey [27], to explore
the app screen to collect the accessibility issues. Different
from their work, our tool actually does not require test
cases, inherits the results provided by Google Accessibility
Test Framework for Android in which checking rules are
developed by accessibility experts.

3.2 Empirical Studies of Mobile Accessibility

Previous research investigating accessibility issues mainly
focus on web applications [48], [49], [50], [51]. Recently,
researchers have begun to investigate the accessibility issues
of mobile apps in different domains, such as health [44],
public transportation [52], smart homes [53], smart cit-
ies [54], and government engagement [55]. Kane et al. [56]
carried out a study of mobile device adoption and accessi-
bility for people with visual and motor disabilities. Ross
et al. [16] examined the image-based button labeling in a rel-
atively larger number of android apps, and they specify
some common labeling issues within the apps. In their fur-
ther study [13], they conducted their study from the per-
spective of accessibility issue types. They measured the
prevalence of each accessibility issue across all relevant ele-
ment classes (Ul components) and apps. In other words,
they focused on each issue type independently, which is a
different research aspect compared with ours. Yan and

3957

Ramachandran [17] adopt the IBM Mobile Accessibility
Checker to explore if 479 Android apps violate the accessi-
bility guidelines and calculate the degree of violation. Ven-
dome ef al. [18] observed the fact that developers rarely
used accessibility APIs or assistive descriptions. They fur-
ther create a taxonomy regarding the aspects of accessibility
issues discussed by developers” posts on Stack Overflow.
However, these works were based on the analysis of a rela-
tively small number of mobile apps (no more than a few
hundreds) instead of a large-scale dataset.

In the latest work, Alshaybana et al. [19] conducted an
empirical study on accessibility issues by leveraging the
ability of Google Accessibility Test Framework [31] and
Google Monkey. For abbreviation, we call their study as
Accessibility Testing with Monkey (AT_Monkey) through-
out the paper. From the apps perspective, they carried out a
study at the screen level by using the criteria: inaccessibility
issue rate for each page, and only investigated the distribu-
tions of inaccessibility issue rate for each app, each issue
type, and app categories due to the limited issues (for each
app) they collected using Monkey, such limitation is also
acknowledged by them. Remarkably, the limited number of
issues is enough for the prevalence of accessibility issues at
the screen level, but difficult to carry out a more in-depth
study at the issue level. As for the analysis from the apps
perspective, they actually paid more attention to the analy-
sis from the perspectives of developers and users instead of
the accessibility issues themselves. In this paper, we aim to
conduct an empirical investigation from the perspective of
accessibility issues themselves and reveal more fine-grained
findings compared with the existing studies. To this end,
different from the previous works, we propose a fully auto-
mated and effective accessibility testing and issue collection
tool with relatively high activity coverage to collect a large-
scale and relatively comprehensive dataset of issues for this
empirical investigation.

4 ApPP Ul EXPLORATION TOOL

To overcome the limitations of accessibility issue collection in
the previous studies such as AT Monkey, as shown in Fig. 2,
we propose a novel app Ul exploration tool (named Xbot)
that can facilitate app accessibility testing and be used to col-
lect issues effectively and efficiently. It leverages the instru-
mentation technique and static data-flow analysis based on
Activity intent parameter extraction to explore Ul pages. Addi-
tionally, Xbot integrates Google Accessibility Test Frame-
work [31] by feeding the explored app Ul pages to it.

4.1 Xbot

To capture the accessibility issues in app pages, we aim to
automatically explore as many app screens as possible. Basi-
cally, dynamic app testing tools of Android apps such as
Google Monkey [27], Sapienz [41], and Stoat [42] are one
choice to do this task, and Eler ef al. [23] and Alshayban et al.
[19] did it in this way. However, these tools are not suitable
enough for accessibility testing of the app ecosystem due to
the following aspects. (1) These app testing tools can only
achieve around 40% activity coverage (Section 4.2.2), which
is not satisfactory to check accessibility issues for apps. It
would introduce data bias and it is difficult to show the real

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

3958

Intent Parameter

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

i Instrumentation i i Extraction E et i Dynamic Issue Collection
E Decompilation |—'—*: E Manifest Para. EE:> Activity |
- ! i i Sl — 1| Launching = >
U‘“ u”u | Activiey Aribute | 1 e e b install & run | i =
Android App | e | E E E lssue Issues
[Chopsar o | i

Fig. 2. Accessibility testing and issue collection with Xbot.

status of accessibility of apps. (2) It takes much more time for
these testing tools to run each app. Such a task is time-con-
suming and labor-intensive.

In fact, the core problem is to render or explore as many
UI pages as possible. To our knowledge, two kinds of meth-
ods can be used to render UI pages: (1) Static page render-
ing, which can render the pages by using the static layout
files (i.e., xml files) in the apk. However, according to a
recent study [57], there are 62.3% apps using dynamic lay-
out method. Although Chen et al. [57] proposed to transfer
the dynamic layout types to static layout, the user interface
differences between the generated pages and the original
pages make accessibility analysis inaccurate. Therefore, we
aim to render and explore app pages by dynamically load-
ing the UI pages. (2) Dynamic page rendering, which can
launch the pages by using Android adb [58], however,
launching activities that require special fields (e.g., Intent
parameters such as “action”, “category”, and Bundle data)
would cause a crash with “NullPointerException”. Such sit-
uation affects the accessibility testing and issue collection
process.

Specifically, as shown in Fig. 2, Xbot contains three main
phases: (1) app instrumentation, which instruments the apk
files to enable launching by other third-party components;
(2) activity intent parameter extraction, which extracts the
required Activity Intent parameters for launching each
activity; (3) accessibility issue collection, which dynamically
launches pages and uses Google Accessibility Test Frame-
work for further issue checking.

4.1.1 Instrumentation and Intent Parameter Extraction

To enable activity launching from other entries, we instru-
ment each apk by manipulating the Android Manifest file
(Activity Attribute Manipulation in Fig. 2) and repackage it to
anew one. Specifically, Xbot first decompiles the app (Decom-
pilation in Fig. 2), extracts each activity together with its
required fields such as “action”, and sets the “exported=true”

| action, category, dats, type Exras | W 70T O
putExtra(key,y/ e @‘g&tra(key)
RN
Activity | Activity 2
putString(lgé\y;v\:;l\lue) /,«"[S‘L;t’Extras() getExtr;s\i)\\\ ,/,getString(key)

e Al

Bundle Bundle

Fig. 3. Data transfer between activities via Intent.

in order to enable the launching process from other compo-
nents. We then repack it to a new apk (Repackage in Fig. 2)
and sign it to ensure the usability. Note that the repackaged
apps are only used for experimental purpose, and all the
experiments are conducted in a controlled environment. The
repackaged apps will not be released for commercial use.

The second part (i.e., Activity Intent parameter extrac-
tion) is the core step of Xbot, we leverage data-flow analysis
to extract the Intent parameters required to launch the target
activities. Fig. 3 shows the mechanism of activity launching,
where Activity 1 puts data into the Intent object and sends
it to Activity 2, and Activity 2 extracts the data out to render
the Ul pages. The parameters of Intent for launching Activ-
ity 2 are the extraction target of Xbot, without them, Activity
2 may not be successfully launched. Xbot is able to parse
two categories of Intent parameters. As shown in Table 1,

e 1) Manifest Para. Extraction. For the basic parameters
such as action, category, data, and type, we parse
them from the Android Manifest file and record the
mapping relations between activities and these basic
parameters.

e b) Source Code Para. Extraction. For the Intent extras
parameters, we extract them from source code
through data-flow analysis. We consider extracting
two types of Intent data described as follows.

One data type is transferred from “Activityl” to
“Activity2” by using Intent directly. The data passing step
is “create an Intent object”—“call intent.putExtra”—“call
StartActivity(intent) to pass the Intent”’—“call intent.
getStringExtra” to get the transferred data (the blue flow dem-
onstrated in Fig. 3). The other data type uses Bundle mecha-
nism to transfer a bundle of data from “Activityl” to
“Activity2”. The data passing step is “create Intent and Bun-
dle objects”—“call bundle.putString and intent.putExtras
(bundle)” —“call StartActivity(intent) to pass the Intent” —*-
call getIntent().getExtras and bundle.getString” to get the
transferred data (the red flow demonstrated in Fig. 3). As

TABLE 1
Types of Intent Parameters
Type Sub-Type
Action
Extracted Intent Parameters | Category
From Manifest File Data
Type
String
Extracted Intent Parameters | Integer
Extras | Long
From Source Code Foat
Boolean

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

shown in Algorithm 1, for the Intent parameters extraction,
we first obtain the basic parameters from manifest file (Line
3). We then filter the methods related to activity life cycle
(Line 5), called meths. These life cycle methods like onCreate()
and onStart() contain Intent extras parameters for rendering
app pages. For each meths, if it calls specific APIs like getStrin-
gExtra and getExtras (Line 7), we trace the parameters’ key
through backward data-flow analysis (Line 8). Note that, the
value type of each parameter is based on the corresponding
API. The Intent extras parameters may not be obtained in life
cycle method. For these cases, we trace the callee method
(Line 10) by parsing the call graph and then extract the param-
eters through the same way for life cycle method (Line 11).
After that, we can obtain the Intent extras parameters
paras_extras for further accessibility testing of rendered

pages.

Algorithm 1. Intent Parameters Extraction

Input: apk;
Output: paras_intent
1 all_acts «— getAllActivities(all_classes);
2 cg «+ getCallGraph(apk);
3 paras_basic — getBasicIntentParameters(mani fest);
4 foreach act € all_acts do

5 meths — getLifeCycleCallBacks(act);
6 foreach m € meths do
7 if hasExtrasParameters(m) then
8 para_extras < backwardDataFlowAnalysis(m);
9 else
10 m_callee «— getCallerMethod(m, cg);
11 para_extras «— getExtrasParameters(m_callee);

12 return paras_intent < paras_basic |J paras_extras;

4.1.2 Accessibility Testing With Xbot and Issue
Collection

To dynamically launch each activity, as shown in Fig. 2, we
install the new repackaged apk on the Android emulator,
and attach the Intent parameters extracted by our tool to the
current activity. When it is launched successfully (Activity
Launching in Fig. 2), we take screenshots of each app page
and then feed it to Google Accessibility Test Framework [31].
Meanwhile, for activities that fail to launch due to app
crashes or permission required, we dump the layout hierar-
chy of the current activity and analyze it to check whether it
contains keywords (e.g., “has stopped” and “keeps
stopping” for app crash, “ALLOW” and “DENY” for per-
mission required), and grant the permission required to
proceed. When the app crashes, we stop the app and set it
to the original state (i.e., a fresh state for another activity to
launch). We collect the detected accessibility issues (Issue
Detection in Fig. 2) and the corresponding layout hierarchy
of each page that contains accessibility issues.

4.2 RQ1: Evaluation of Xbot

In this section, we evaluate the effectiveness and efficiency of
Xbot by comparing it with manual exploration and Monkey.
We mainly compare the explored activities coverage and the
time cost since both tools rely on the same accessibility test
framework to check accessibility issues, the main difference
comes from the number of explored activities.

3959
TABLE 2
Effectiveness and Efficiency Evaluation of Xbot
Metrics Manual Exploration ~ Xbot Monkey Xbot
Avg Time (min) 10 2.65 30 5.67
Avg launched Activity Ratio 40.80% 91.84% 43.09% 79.81%
#Collected Issues 79 142 851 3,063

The number of apps for manual testing and testing with Monkey are 4 and
100, respectively.

4.2.1 Manual Exploration With Google Scanner

versus Xbot

We conduct a user study to compare Xbot with manual
exploration. We recruit 10 participants from our university,
including Ph.D students, post doctorates, and undergradu-
ate students. We randomly select four apps (i.e., Bitcoin [59],
Bankdroid [60], ConnectBot [61], and Vespucci [62]) from Goo-
gle Play Store, and ask them to use Accessibility Scanner to
detect accessibility issues on these four apps in a fixed time
(i.e., 10 minutes per app), trying to explore as many pages
as possible, meanwhile, we record the number of collected
issues. In contrast, we use Xbot on these four apps to detect
accessibility issues, and record the time and the number of
detected issues. As shown in Table 2, the result shows that
the participants can only explore 40.80% user interface
pages for each app on average, collecting 79 accessibility
issues. While Xbot explores 91.84% pages per app on aver-
age, and collects 142 accessibility issues in total. Moreover,
it only takes 2.65 minutes for Xbot to test one app, and it is
about 4 times (10 mins) faster than that of manual explora-
tion. To understand the significance of the differences
between manual exploration and with Xbot, we carry out
the Mann-Whitney U test [63], which is designed for small
samples. Table 2 shows that our result is significant with p-
value < 0.01. Obviously, Xbot is significantly more effective
and efficient in collecting accessibility issues, and can help
developers explore more pages, increasing the possibility of
detecting more potential accessibility issues.

4.2.2 Accessibility Testing With Google Monkey versus
Xbot

Besides the manual exploration method with Accessibility
Scanner, using dynamic Android app testing tools such as
Google Monkey is another method for automated accessibil-
ity testing in previous work [19], [23]. To demonstrate the
better performance of Xbot, we choose the most representa-
tive Android app testing tool, Monkey [27], which is also
the official testing tool of Google and widely-used in both
academy and industry. Specifically, we randomly collect 50
commercial apps from Google Play and 50 open-source
apps from F-Droid [64] as the experiment subjects. For the
dynamic exploration with Monkey, we configure the execu-
tion parameter as “—ignore-crashes —ignore-timeouts —throt-
tle 250 -v -v -v 50000”. The parameter configuration means
that Monkey will ignore crashes and timeouts and the time
interval between two events is 250 ms. The execution time is
set by 30 minutes and the experiment environment is the
same as Xbot mentioned in Section 4.1. Fig. 4 shows the
comparison result, the average launched activity ratios of
100 Android apps are 43.09% versus 79.81% for the two

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

3960

o
IS
T

o O

o 0 O

__.|4

- v~

Launched Activity
Ratio (%)

e e
o N
T
.
L

Monkey Xbot

Fig. 4. Comparison on activity coverage of Monkey and Xbot for accessi-
bility testing.

methods. In terms of the difference of collected accessibility
issues between Xbot and the collection method by using
Monkey, Xbot is able to collect 3 more times (3,063 versus
851) accessibility issues. The results unveil that Xbot outper-
forms Monkey when checking and collecting accessibility
issues dynamically. As shown in Fig. 4, we can see that the
launched activity ratio of testing with Monkey ranges from
15% to 65%. Xbot performs better and the average launched
activity ratio of testing is about 80%. We also conduct a sta-
tistic analysis for their ability of activity launching in mobile
accessibility testing, the p-value < 0.01, which means that
the results of these two methods are significantly different.
Besides the above basic evaluation, to conduct a fair com-
parison, we also evaluate the performance of Xbot by com-
paring it with AT Monkey’s method [19] in terms of issue
collection on their released dataset [65]. We run Xbot and
their tool [65] on their dataset individually to explore the app
UI pages and then collect the corresponding accessibility
issues. As shown in Table 3, in terms of the number of col-
lected accessibility issues, we are able to collect more issues
obviously (63,734 versus 9,462 on AT Monkey’s dataset),
owing to the effectiveness of Xbot. The result is consistent
with the result in the above evaluation on 100 Android apps.

Answer to RQ1. Xbot outperforms existing methods when
conducting accessibility testing for Android apps. With
the ability of app Ul exploration with relatively high activ-
ity coverage (about 80%), Xbot is able to collect a relatively
comprehensive and large-scale dataset of accessibility
issues effectively and efficiently for further empirical
investigation at the issue level.

5 EMPIRICAL INVESTIGATION OF APP
ACCESSIBILITY

In this section, we aim to conduct an empirical study on the
large-scale dataset collected by Xbot to mine the accessibility
issue characteristics. Therefore, we pay more attention to the
analysis from the perspective of accessibility issues them-
selves in this paper. (1) We first investigate the current status
quo of the accessibility issues in apps including both the
prevalence and severity situation at the issue level. (2) Then,

TABLE 3
Comparison Between Xbot and AT_Monkey on Issue Collection

Method #Collected Issues
AT_Monkey [19] 9,462
Xbot 63,734

The comparison is based on the dataset in AT _Monkey [19].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

TABLE 4
Accessibility Issues Collected by Xbot and the
Corresponding Features

#Apps W.

#Lau.

#Acts W.

Source #Apps Issue(s) #Acts Acts Issue(s) #Issues
Ggfagyle 1172 ofiey 179 o @iasth || 5057
FDoid 109 goiy 5% o (gsory | 2000
Toal 2270 [Cggiogny | 52! | gagi esot || %07

(W.: With; Lau.: Launched).

we mine the in-depth relation between issue types and app
categories, GUI component types. (3) Third, as we conducted
quantitative analysis on specific issue types while [13], [19]
do not, we can provide more quantitative issue details and
more fine-grained findings for app developers. (4) Last, we
further analyze the fixing status using our collected dataset
and discussed the tracking resultin AT Monkey [19].

Table 4 summarizes all related data that we use to quan-
titatively analyze the app accessibility issues, including the
accessibility issues collected by Xbot. We execute 2,270
unique Android apps by Xbot, including 1,172 closed-
source apps from Google Play Store and 1,098 open-source
apps from F-Droid. Since some apps may be available on
both Google Play and F-Droid, we consider such apps as
open-source apps to ensure there is no overlap and avoid
biased results on closed-source versus open-source apps.
These apps contain 23,921 activities, and the activity cover-
age of Xbot is 72.81% (i.e., W), which is lower than
the result of the average coverage for each app (i.e., 79.81%)
in Section 4.2.2. Because some apps contain hundreds of
activities, which largely affects #Launched acts. Overall,
Xbot achieves a higher activity coverage on F-Droid apps
than Google Play apps (i.e., 78.93% versus 70.76%).

5.1 RQ2: Overall Status of Mobile App Accessibility

Among the 2,270 apps, we finally collect 86,767 real accessi-
bility issues in total, which is the largest dataset so far in
this research area.’ 2,020 (88.99%) Android apps in our data-
set contain at least one accessibility issue. This result dem-
onstrates that accessibility issues are prevalent across all
apps (prevalence situation), which is consistent with the
conclusion drawn by Alshayban et al. [19]. However, they
only revealed the prevalence of issues at the screen level
due to the limited number of issues collected for each app,
while we further provide an empirical investigation of the
overall status of app accessibility at the issue level to show
the severity situation as follows. We use the number of
issues on each UI page and in each app to reflect the severity
situation. Specifically, on average, there are 43 accessibility
issues for eafth. app (i.e., %)Among the 17,417
launched activities, there are 6.5 accessibility issues on aver-

. #1ssues
age for each flawed page (i.e., FAciiwith issue(s) issue(s)).

We further investigate the differences of app accessibility
between the closed-source and open-source apps, which is
not investigated in the previous studies. Out of our expecta-
tion, compared with open-source apps, the commercial

3. Besides the 86,767 accessibility issues, we also obtain other 63,734
issues collected from the evaluation of Xbot (RQ1). Therefore, we actu-
ally have over 100k accessibility issues in total.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

Touch target

Text contrast

Item label

Image contrast

Item descriptions

Item type label
Unsupported item type
Clickable items
Editable item label
Link

10000 15000 20000 25000 30000
#lssues

0 5000
Fig. 5. Issue type distribution ranked by #issues.

apps have a higher ratio (i.e., %M) (65.07% versus
81.18%) of accessibility issues. It identifies that the develop-
ers and the corresponding commercial companies do not
pay sufficient attention to the accessibility issues in practice.
On the other hand, although it seems that open-source apps
are more accessible, that is because the open-source apps
may have fewer features, i.e., fewer components in each
page, leading to fewer accessibility issues. Specifically, each
F-Droid app contains 5.5 activities, and each Google Play

app contains 15.3 activities on average (i.e., A —).

Answer to RQ2. 89% apps in our dataset are suffering
from accessibility issues, with 43 issues for each app and
6.5 issues for each page on average. Overall, open-source
apps have a better status than closed-source apps in our
dataset. The app accessibility deserves more attention
from the development team.

5.2 RQa3: In-Depth Relation Between Issue Type and
App Category, GUI Component

5.2.1 Accessibility Issue Types

In this section, we conduct cross analysis of issue types ver-
sus app category and GUI component (i.e., how frequently
do issue types occur in various app categories, and in vari-
ous GUI components), which has never been investigated in
the previous studies [13], [19].

Specifically, to analyze the common accessibility issue
types regarding app categories and GUI component types
at the issue level, we first investigate the issue type distribu-
tion ranked by the number of accessibility issues. As shown
in Fig. 5, item label, item descriptions, touch target, text contrast,
and image contrast are much more frequent compared with
other accessibility issue types, accounting for 93.1% of all
issues. They pose a serious challenge to the accessibility of
user experience in apps and developers should pay more
attention to them. Among them, fouch target, text contrast,
and item label are the top 3 issue types ranked by the number
of accessibility issues. These three issue types all contain
over 20,000 issues. Compared with our study, Alshayban
et al. [19] only focused on the relations between issue types
and apps, app categories based on the metric of inaccessibil-
ity issue rate at the screen level, while the in-depth relation
between issue type and app category, GUI component at
the screen level is not investigated in their study.

5.2.2 Different Issue Types in Each App Category

To explore what types of accessibility issues often cause in
different app categories, we compute the relative frequenc

3961

Item label -
Item type label - [
Editable item label -

Il s 5 | r 0.30
0.24

Clickable items & | B]
Item descriptions - . 0.18
Unsupported item type -
Touch target -0.12
Text contrast

Image contrast - -0.06
L'nk’\.\ I T T R R R N S I -0.00

%) nu v —“un < " un

$c848022055802E832=2320

W= =Z0=Zo==wWuw =0 =0z

SEELEE3EIIPEEL 2L808E8E

AZHWOESSZEANEICI GRS

SDZ= ol i - Q

B2>33525 9030822 3 &

e wel 52z2Q02% w =

g2 >od IS ogsd o

o a>= G_12a=

Zz 2o “E2zr> 0% Z

Wz =<2 <uwhb Oz <

| < ,= o - |

n w < 'ﬂ_ﬁ %)

o w =

< Q BN]

= Q z

Fig. 6. Different accessibility issues in different app categories (Issues in
each app category are normalized to 1).

of different types of issues within each app category. We
draw a heat map in Fig. 6, and the degree of the color in
each cell represents the proportion of all issue types in each
app categories. Within each column, the total number of 10
issue types add up to 1 and the darker color indicates the
more issues of that type in this app category. We can see
that some issues widely appear in most categories such as
item label, touch target, and text contrast, while some issues
like editable item label, link rarely appear.

On the other hand, some issues are rather severe in some
categories than others. In other words, some specific app
categories are more likely to have specific types of issues
according to the relation between issue type and app cate-
gory. For example, touch target is a common issue for most
app categories, but it is particularly serious for shopping
apps. Shopping apps often offer their users a list of products
to choose from per screen page. To accommodate so many
elements within each page, they make the buttons too small
which may cause difficulty for users to click them especially
for the elderly. Similarly, Item descriptions often occurs in
sports app. Most sports apps are providing sports news,
match living for users. To give users an overview of the
team ranking, or broadcast list, they need to put many items
in one page. Adding descriptions to each item is always dif-
ficult, especially that most lists are dynamically updated.
For saving efforts, many developers just put the same con-
tent description (similar to alt text of the picture in the
image [66]) to all of these items like “game”, “video”. How-
ever, these identical descriptions for different items will
confuse blind users who rely on the screen reader to read
the content in the app.

5.2.3 Issue Types Related to GUI Component Types

Within each flawed screen, the existence of issues is also
highly related to the GUI components types such as Text-
View, ImageView, and Button. 93.1% accessibility issues
belong to 5 components (i.e., TextView, ImageView, Button,
EditText, and ImageButton). Although some types of compo-
nents such as TextInputLayout and RadioButton are not used
frequently in apps, the issue percentage is very high (.e.,
65.8% and 47.5%). It means that designers and developers
are more likely to make mistakes about accessibility when
developing these specific components. These components
deserve more attention from the development team.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

3962

Item label - - - !
Item type label - !
Editable item label - .
Clickable items - | 0.6

Item descriptions - -

Unsupported item type - T -0.4
Text contrast - . 0.2

Image contrast - .
Link - T 0.0

TextView -
ImageView -
Button -

EditText -
ImageButton -
CheckBox -
RadioButton -
Spinner -
TextlnputLayout -

Fig. 7. Different accessibility issues in different components (Issues in
each component type are normalized to 1).

B Image contrast B Text contrast B height B width

NREA (R 1

Goog\e Play F- Drold
(b) Distribution of detected issues
(w.r.t component size)

w

N
Height/Width(dp)

Contrast ratlo

Google Play F- Drold
(a) Distribution of detected issues
(w.r.t contrast ratio)

Fig. 8. Distribution of the specific issue types (i.e., contrast ratio and
component size of touch target issues).

Some types of issues are also specifically related to cer-
tain components. To investigate their relation, we compute
the percentage of different types of accessibility issues for
each component type, and draw a heat map in Fig. 7. The
issue touch target frequently appears in clickable compo-
nents such as Checkbox, RadioButton, Spinner, and Switch, as
these components may be too small to be clicked by the
users, especially for users with motion disability. 38.8%
accessibility issues of TextView are about text contrast
issues which makes the content difficult to be read by
users. For image-related components like ImageView and
ImageButton, the biggest issue is the item label, i.e., missing
the content description of the image for users who cannot
see the screen.

Answer to RQ3. 5 types (e.g., touch target, text contrast,
and item label) of issues occur frequently. Some issue
types are highly related to app categories such as the
small size of touchable components in shopping apps
and duplicate content descriptions of different items in
sports apps. Similar patterns also apply to different com-
ponent types such as the low text contrast in TextView
and missing labels for image based GUI components.

5.3 RQ4: Quantitative Analysis of Specific Issue
Types

Based on the results in Section 5.2, we find that some issue
types are more frequent and common than others such as
text contrast, image contrast which are about the color con-
trast, and touch target which is about the size of the compo-
nent. In this section, we further provide an in-depth
analysis on these three most frequent issue types

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

TABLE 5
Demo of the Top 10 Contrast Issues

Contrast Demo Foreground Background #Issues

#999999 #FFFFFF 458
I_I #FFFFFF #AAAAAA 388
I_I #B2B2B2 #FFFFFF 357
Iﬂl #878787 #FFFFFF 239
I_I #9E9E9E #FFFFFF 230
I_I #ESESES #FFFFFF 222
I_I #DESF94 #EFEFEF 217
- #9D797E #C88886 217
- #008CCA #B05656 212
- #C46A9E #7755CD 196

Kfir Shlomo
& ¢

Cancel button in email doesn't work and there's no cancel button in the app. Update credit

card button doesn't work. Prices from Google are different than the app{ The comment sec- |

[tion has a white font so | can't see anything kheck in/out times are wrong.

Fig. 9. A real review complaining about text contrast.

The text contrast is the difference between the fore-
ground text and the background color. Fig. 8a shows that
the overall results of the wrong text contrast ratio between
Google Play and F-Droid are similar, ranging from 1 to 4.5
roughly. Most wrong instances are located between 2 to 4
contrast ratio, though the best practice of text contrast ratio
is over 4.5 (including 4.5). We list the top-10 most frequent
wrong pairs of foreground text and background color in
Table 5 including gray text in white background, white text
in gray background, blue text in red background Q.e.,
#B05656). These color pairs will negatively influence the
readability of the text, resulting in bad user experience. As
shown in Fig. 9, the user named “Kfir Shlomo” complained
“The comment section has a white font so I cannot see any-
thing.” which is due to the accessibility issue of text contrast.
It is hard even for users without disabilities to discriminate
the text from the background color, let alone the users with
vision impairment or color blind [67]. More examples can
be seen in the first two sub-figures in Figs. 11a and 11b.

Compared with the results on text contrast issues, the
results of image contrast also have a similar presentation for
these two markets. Specifically, compared with Google Play
apps, F-Droid apps have a wide range contrast ratio from 1
to 3. There are several cases that have a significant effect on
a lower image contrast (i.e., around 1) for both two markets,
which are also far away from the best practice of image con-
trast ratio. In addition, the contrast range between 2 and 3
accounts for the most image contrast issues for both two
markets. As shown in Fig. 11c, the item size is too small to
see clearly for end-users, even for users without any disabil-
ity. Some of small-size buttons are created intentionally
regardless of the app accessibility. For example, the “close
button” in the left figure in Fig. 11c is so small that users
have a great chance of clicking the “CATCH NOW!” button
i.e., the advertisement.

Authorized licensed use limited to: NANKAI UNIVERSITY-. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

» “Unchanged”

- “Fixed”

---» “Feature reduction”

More issues

Changed \| o | » “Feature addition”

10

Fig. 10. Issue fixing analysis in 70 apps with 210 versions. The number
inside the box represents the number of apps.

Fig. 8b summarizes the distribution of concrete compo-
nent size in detected touch target issues. The distributions
of component width in terms of Google Play and F-Droid
are different obviously. Specifically, the component width
distribution of Google Play is mainly ranging from 20dp to
40dp, however, the distribution of F-Droid is very concen-
trated on 20dp. While the best practice of the height and
width is larger than 48 dp. In other words, there are strong
commonalities for such issues in F-Droid apps, meanwhile,
their touch target components in many instances are
extremely small. We further examine these cases and find
that most of the components are concentrated on the types
of CheckBox, RadioButton, Spinner, and Switch. For the com-
ponent height distribution, Google Play apps present a con-
centration performance compared with F-Droid apps. 40dp
is the most frequent height in commercial apps. The distri-
bution range is relatively wide for F-Droid apps (i.e., con-
centrating between 30dp and 45dp). Also, similar to the
width issues, several cases use 20dp height in F-Droid apps
with serious touch target issues.

Answer to RQ4. We analyze the error patterns of the most
frequent issues, and find (1) the low text and image con-
trast are caused by the wrong selection of color schema
such as the foreground gray text on white background,
and white image button above colorful background pic-
ture. (2) The small size of clickable components hinders
users’ usage and those issues are more serious in F-Droid
apps than that of Google Play apps. But some touch target
issues are intentionally created for directing users to
click the advertisements.

5.4 RAQ5: Issue Fixing Analysis

Due to the competitive market, the mobile development team
frequently update their apps to gain the market share by
releasing new features [57], fixing reported bugs [24], [25],
[68], [69], patching security bugs [70], [71], etc. However,

Feedback

(2) Text contrast

(b) Image contrast

3963

using Alshayban et al.’s method cannot analyze the issue fix-
ing status effectively and accurately due to the unsteady activ-
ity coverage of Monkey (flaky tests [72], [73], [74], [75D.
Meanwhile, their fixing results are not manually validated,
thus cannot conclude whether the previous detected issues
are truly fixed. They found that 47% of app updates improve
the overall accessibility, 28% of the updates impacted the
overall accessibility negatively, and for the remaining 25%
overall accessibility levels remained the same [19].

In this section, we aim to analyze the issue fixing status
during app evolution by leveraging Xbot. We randomly
selected app package names crawled from Google Play, and
collected the history versions of these apps from APK-
Monk [76] because Google Play only maintains the latest
version. To minimize the side-effect caused by functionality
addition and deletion when investigating the issue number
changes during app evolution, we select the 3 latest versions
of each app as the experimental subjects to observe whether
the issues have been fixed from the aspect of accessibility
improvement. To this end, we collected 70 apps with 210
different versions, including some popular ones such as
Booking [77] and Amazon Assistant [78]. We do not investi-
gate a large-scale dataset of apps because we need to manu-
ally cross-validate the issues on each page of each version.
Based on Xbot, we collect the accessibility issue results for
each version under the same experimental environment.
After that, we manually compare the results among differ-
ent versions for each app, including the number of issues
detected in each version, the details about the issues,
together with the reasons of issue number changing.

Fig. 10 shows the number of apps with different status.
Among the 70 apps, we find that the number of issues
across different versions is unchanged in 57 apps (81.43%,
marked blue in Fig. 10). The reasons for the ignorance is
that either the development team do not locate these issue,
or they are not motivated or knowledgeable enough to fix
these issues. The number of issues changes in 13, and 10
(14.19%, marked orange in Fig. 10) of them are detected
with more issues during app updates. That is because of the
new feature release accompanied with more screens, result-
ing in more issues. For example, an app description page
(Fig. 12a (3)) is added into this app, introducing 2 additional
accessibility issues. Finally, there are only 3 apps (4.29%)
detected with less issues during their life-cycles. By observ-
ing their issue evolution, we find that the reason for the
issue number decline in one app Battery Saver-Bataria Energy
Saver is that they delete some features (i.e., functionality
module), hence two issues attached are removed. Fig. 12a
(1) shows two touch target issues, and the corresponding

€ Message Setting

(c) Touch target

Fig. 11. Real examples of accessibility issues of text contrast, image contrast, touch target, item label, and item descriptions.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

3964

4 o o
(1) Original
page

(a) Example of accessibility issue number changes due to
functionality deletion or addition

(3) Functionality
addition

(2) Functionality
deletion

(I) Old page

(b) Example of accessibility issue fixed

(2) Marked issues

(3) New page

Fig. 12. Real examples of accessibility issue number changes.

“fixing” page deletes the functionality of “More Apps from
MHC” [79] leading to the disappearance of the issues
(Fig. 12a (2)). The real issue fixing only occurs in an app
named Torchie-Volume Button Torch [80]. In detail, one page
in the old version (2016-05-18) contains 13 accessibility issues
such as touch target, item descriptions, and text contrast as seen
in Fig. 12b (1) and Fig. 12b (2). By re-designing and re-imple-
menting the Ul in the new release version (i.e., version 2017-
08-24), all of these issues are fixed by removing low-contrast
text, adjusting the image color schema and adding a content
description to the Ul components in Fig. 12b (3).

To conduct a fair comparison, we also conduct experi-
ments on the dataset used in AT Monkey [19] for the
multi-version experiment. We requested for the dataset
from the authors and obtained 37 apps with 92 versions,
based on which we run Xbot to observe the issue fixing sta-
tus and compare the results obtained from AT Monkey.
After manually analyzing the results, we find that most of
the accessibility issues are remained in the multiple app ver-
sions to investigate the fixing status. The number of issues is
unchanged in 21 apps (56.76%). 10 of them (27.03%) are
detected with more issues due to adding new features along
with version updates. Taking the app named Word Cloud
(package name: ice.lenor.nicewordplacer.app) as an exam-
ple, for its Ul page (ice.lenor.nicewordplacer.app.MainAc-
tivity) of version 2.2.3, Xbot detects three more accessibility
issues (i.e., Text contrast and Touch target) compared with
the version 2.2.2. The reason is that the version 2.2.3
involves an advertisement on the top of screen. Another
example is Hairstyles step by step (package name:

Com.piupiuapdps.hairstyles), whose new version introduces
Authorized |

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

more issues (i.e., Touch target issue) due to adding the text
of “Privacy Policy”. Only 6 apps (16.22%) have less issues
during version updates, where the developers delete some
features instead of really fixing issues to improve the app
accessibility. The overall result is consistent with the results
on our dataset of 70 apps with 210 different versions.

Answer to RQ5. Analyzing the version history of selected
apps indicates that the accessibility issues are rarely fixed
by the development team. With the increase of app fea-
tures, more issues are usually introduced. Some accessi-
bility issues are fixed due to the reduction of features and
only a few issues are intentionally fixed. Our results are
different from the findings in [19], where they claimed
apps become more accessible over time, with nearly half
of app updates improving the overall accessibility, how-
ever without in-depth analysis on whether previous
issues are truly fixed.

6 DiscussION

The fine-grained and insightful findings demonstrate the
great importance of issue collection for such an empirical
study. These findings unveiled in Section 5 may not be
derived from the previous empirical studies due to the data-
set with limited accessibility issues for each app. Last but not
least, due to the low activity coverage of Monkey, issue fixing
evolution cannot be accurately evaluated due to the flakiness
nature of dynamic testing. Therefore, the 47% fixing rate
in [19] might not be well validated. Such similar results
would mislead the researchers, users, and developers in app
accessibility. Finally, we, here, highlight that our study are
from the perspective of accessibility issues themselves (i.e.,
issue level) and actually different and more in-depth com-
pared with the previous studies at the screen level.

In the following, we first discuss implications of our
study based on Xbot and limitations of Xbot, and motivates
some future work.

6.1 Design Implications
6.1.1 For Mobile App Designers and Developers

Despite having access to the accessibility guideline released
by Android [81] and iOS [82], designers and developers
may not understand them very well due to too abstract con-
cepts and the lack of real examples. For example, it is not an
easy task for designers to select color schema for not only
highlighting the text, but also improving visual comfort, or
increasing the size of the button. It is also difficult for devel-
opers to identify the views that a screen reader can focus
and what descriptions should be added for supporting
blind users. To help the development team better under-
stand the accessibility issues, we are constructing a large-
scale gallery [28] including both good GUI examples and
“negative” GUIs with accessibility issues. Viewing these
examples may help developers and designers who are not
in the shoes of the disabled to learn both the good practice
and also failure lessons about app accessibility. This gallery
can complement with the accessibility guideline for elabo-
rating the accessibility principles.

icensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

6.1.2 For Mobile App Release Platform Designers

Current mainstream app release platforms, such as Google
Play [83], support the app search by keywords and ratings,
etc. However, as apps are more likely to be rated by users
without disabilities, accessibility concerns from limited users
tend to be diluted by other comments from users. Markets do
not offer a mechanism to search apps based on their accessi-
bility levels. Our tool can be used to assess the accessibility
status of an app inferring an accessibility score for it, similar to
user ratings, which can be further used to rank the apps to
facilitate people with disabilities to find more accessibility-
friendly apps. Moreover, as our framework is capable of test-
ing and evaluating the accessibility issues of a large number
of apps efficiently, the app release platforms can leverage
our framework to constantly evaluate the large volume of
available apps and update the ranking of apps based on their
accessibility as often as needed. Similar to previous Google’s
new mobile-friendly ranking algorithm that’s designed to
give a boost to mobile-friendly pages in Google’s mobile
search results [84], the app store can boost the accessibility-
friendly apps in the app searching.

6.2 Limitations and Future Work

First, accessibility issues can happen even if all the GUI compo-
nents are accessible. For example, a menu button may have
good color contrast, the right size, and be positioned appropri-
ately. However, the associated alternative text information can
be inappropriate which can confuse a user with visual impair-
ments [85]. To detect such accessibility problems, the tool
needs to be able to understand the appropriateness of the alter-
native text. Future work should examine how to integrate
human judgments into the automated accessibility issue detec-
tion process. Second, our tool integrated the ability of Google
Accessibility Test Framework [31], it detects accessibility
issues based on a set of general accessibility rules, which are
designed to cater for a set of common issues encountered by
users with a wide range of disabilities. As a result, accessibility
issues detected by our tool may be more than the issues that an
individual user who only has a particular type of disability
cares about. For example, a user with hearing impairments
could care less about the accuracy of alternative texts, while a
user with visual impairments would depend heavily on accu-
rate alternative texts. Therefore, when using our tool to rate
and rank the accessibility of mobile apps for users with disabil-
ities, it is also important to consider the particular type of dis-
ability that users have and adapt the accessibility rating or
ranking of mobile apps accordingly. Future work should
examine more about how to dynamically customize mobile
apps accessibility evaluation based on the particular types of
disabilities that users have. Third, our research, however, has
not yet explored ways to recommend solutions to fix the
detected accessibility issues or automatically fix these issues.
Since this research has also created a large dataset of mobile
apps with good and “negative” accessibility experience, future
work could also examine ways to leverage the data, such as by
training a deep learning model to provide app designers and
developers with suggestions and examples to fix accessibility
issues. Last, although the launched activity coverage (about
80%) is much better than Monkey, it still does not achieve
100%. The reasons are as follows. (1) Although we provide the

3965

Intent parameters, some activities still need to load other
required data from local storage such as SQLite database and
remote server. Our tool cannot provide such types of data,
which would cause errors. (2) Some apps require valid authen-
tication, which means that they will check whether the app has
been logged in successfully before launching pages.

7 CONCLUSION

In this paper, we first highlight the challenges caused by the
collected issue dataset in the previous empirical studies on
app accessibility. We then propose an effective app explora-
tion tool for automated accessibility testing of Android apps
to mitigate the problem of issue data collection. Our tool
achieves better performance when conducting accessibility
testing. Based on our tool, we carry out a large-scale, in-depth
investigation on 86,767 real accessibility issues and find that
88.99% apps suffer from accessibility issues. We further
unveil useful findings for app developers, designers, and
research communities according to the results of the empiri-
cal study. Based on our findings, we further provide mobile
app accessibility design implications for different stakehold-
ers, such as app designers or developers, mobile app release
platforms, and the mobile accessibility research community.
Lastly, we highlight potential future research directions,
including investigating methods to detect accessibility issues
that still need human perception/intelligence to detect, to
provide customized accessibility issues ratings based on
users’ specific disabilities, and to provide suggestions for fix-
ing accessibility issues. Meanwhile, we released the dataset
and the code of Xbot to facilitate the following works.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants 62102284 and 62102197.

REFERENCES

[1] Apple-Accessibility. 2019. [Online]. Available: https://www.
apple.com/accessibility /

[2] Microsoft-Accessibility. 2019. [Online]. Available: https://www.
microsoft.com/en-us/accessibility

[3] IBM-Accessibility. 2019. [Online]. Available: https://www.ibm.
com/able/

[4] Facebook-Accessibility. 2019. [Online]. Available: https://www.
facebook.com/accessibility

[5] GSA, “European accessibility act - Employment, social affairs,
inclusion,” 2018 [Online]. Available: https://www.section508.
gov/manage/laws-and-policies

[6] IT accessibility laws and policies, 2018. [Online]. Available:
https:/ /www.section508.gov/manage/laws-and-policies

[71 WCAG, “Web content accessibility guidelines (WCAG) 2.1,” 2019.
[Online]. Available: https://www.w3.org/TR/WCAG21/

[8] BBC, “BBC mobile accessibility prototype : Home,” 2019. [Online].
Available: https://www.bbc.co.uk/guidelines/futuremedia/
accessibility /mobile

[9] S. Trewin, B. Cragun, C. Swart, J. Brezin, and]. Richards,

“Accessibility challenges and tool features: An IBM web devel-

oper perspective,” in Proc. Int. Cross Disciplinary Conf. Web Accessi-

bility, New York, NY, USA, 2010, pp. 32:1-32:10.

J. P. Bigham, J. T. Brudvik, and B. Zhang, “Accessibility by dem-

onstration: Enabling end users to guide developers to web accessi-

bility solutions,” in Proc. 12th Int. ACM SIGACCESS Conf. Comput.

Accessibility, New York, NY, USA, 2010, pp. 35-42.

L. Hokkanen and K. Vaananen-Vainio-Mattila, “Ux work in start-

ups: current practices and future needs,” in Proc. Int. Conf. Agile

Softw. Develop., 2015, pp. 81-92.

[10]

[11]

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

https://www.apple.com/accessibility/
https://www.apple.com/accessibility/
https://www.microsoft.com/en-us/accessibility
https://www.microsoft.com/en-us/accessibility
https://www.ibm.com/able/
https://www.ibm.com/able/
https://www.facebook.com/accessibility
https://www.facebook.com/accessibility
https://www.section508.gov/manage/laws-and-policies
https://www.section508.gov/manage/laws-and-policies
https://www.section508.gov/manage/laws-and-policies
https://www.w3.org/TR/WCAG21/
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile

3966

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

J. Chen et al. “Unblind your apps: Predicting natural-language
labels for mobile gui components by deep learning,” 2020,
arXiv:2003.00380.

A.S.Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock, “An epidemi-
ology-inspired large-scale analysis of Android app accessibility,”
ACM Trans. Accessible Comput., vol. 13, no. 1, pp. 1-36, 2020.
Wikipedia, “Google TalkBack,” 2019. [Online]. Available: https://
en.wikipedia.org/wiki/Google_TalkBack

L.C.Serra, L. P. Carvalho, L. P. Ferreira, J. B.S. Vaz, and A. P. Freire,
“Accessibility evaluation of e-government mobile applications in
Brazil,” Procedia Comput. Sci., vol. 67, pp. 348-357, 2015.

A. S. Ross, X. Zhang, J. Fogarty, and]. O. Wobbrock, “Examining
image-based button labeling for accessibility in Android apps
through large-scale analysis,” in Proc. 20th Int. ACM SIGACCESS
Conf. Comput. Accessibility, 2018, pp. 119-130.

S. Yan and P. Ramachandran, “The current status of accessibility
in mobile apps,” ACM Trans. Accessible Comput., vol. 12, no. 1,
2019, Art. no. 3.

C. Vendome, D. Solano, S. Linan, and M. Linares-V asquez, “Can
everyone use my app? An empirical study on accessibility in
android apps,” in Proc. IEEE Int. Conf. Softw. Maintain. Evol., 2019,
pp. 41-52.

A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in
Android apps: State of affairs, sentiments, and ways forward,” in
Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 1323-1334.
Google-Lint, “Android Lint,” 2018. [Online]. Available: https://
developer.android.com/studio/write/lint.html

Google-Espresso, “Espresso | Android developers,” 2018.
[Online]. Available: https://developer.android.com/training/
testing /espresso

Google-Robolectric, “Robolectric,” 2018. [Online]. Available:
http:/ /robolectric.org/

M. M. Eler,]. M. Rojas, Y. Ge, and G. Fraser, “Automated accessi-
bility testing of mobile apps,” in Proc. IEEE 11th Int. Conf. Softw.
Testing Verification Validation, 2018, pp. 116-126.

L. Fan et al., “Efficiently manifesting asynchronous programming
errors in android apps,” in Proc. 33rd ACM/IEEE Int. Conf. Auto-
mated Softw. Eng., 2018, pp. 486-497.

L. Fan et al.,, “Large-scale analysis of framework-specific excep-
tions in android apps,” in Proc. IEEE/ACM 40th Int. Conf. Softw.
Eng., 2018, pp. 408-419.

Google-Accessibility-Scanner, ~ “Accessibility ~ scanner,” 2019.
[Online]. Available: https:/ /play.google.com/store/apps/details?
id=com.google.android.apps.accessibility.auditor&hl=en_SG
Google-Monkey, “Google monkey,” 2019. [Online]. Available:
https://developer.android.com/studio/test/ monkey

S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu, “Mobile
accessibility study,” 2019. [Online]. Available: https://sites.
google.com/view/mobile-accessibility /

United-Nations, “Article 9 — Accessibility | United Nations enable,”
2018. [Online]. Available: https://www.un.org/development/
desa/ disabilities /convention-on-the-rights-of-persons-with-
disabilities /article-9-accessibility.html

R. E. Ladner, “Design for user empowerment,” Interactions, vol. 22,
no. 2, pp. 24-29,2015.

Google-Accessibility-Test-Framework, “Accessibility-test-frame-
work-for-android,” 2019. [Online]. Available: https://github.
com/google/Accessibility-Test-Framework-for-Android
W3C-Web-Accessibility, “Web content accessibility guidelines
(WCAG),” 2018. [Online]. Available: https://www.w3.org/WAIL/
standards-guidelines/wcag/

W3C-Mobile-Accessibility, “Mobile accessibility at W3C,”
2018. [Online]. Available: https://www.w3.org/WAI/standards-
guidelines/mobile/

K. Park, T. Goh, and H.-J. So, “Toward accessible mobile applica-
tion design: Developing mobile application accessibility guide-
lines for people with visual impairment,” in Proc. HCI Korea,
South Korea, 2014, pp. 31-38.

A. Jaramillo-Alcdzar and S. Lujan-Mora, “An approach to
mobile serious games accessibility assessment for people with
hearing impairments,” in Proc. Int. Conf. Inf. Theoretic Secur.,
2018, pp. 552-562.

B. Grellmann, T. Neate, A. Roper, S. Wilson, and J. Marshall,
“Investigating mobile accessibility guidance for people with
aphasia,” in Proc. 20th Int. ACM SIGACCESS Conf. Comput. Acces-
sibility, New York, NY, USA, 2018, pp. 410-413.

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

J.-M. Diaz-Bossini and L. Moreno, “Accessibility to mobile interfaces
for older people,” Procedia Comput. Sci., vol. 27, pp. 57-66, 2014.
Google-Accessibility, “Google accessibility —overview,” 2019.
[Online]. Available: https:/ /developer.android.com/guide/topics/
ui/accessibility

Google-Accessibility-Suite, “Android accessibility suite,” 2019.
[Online]. Available: https://play.google.com/store/apps/details?
id=com.google.android.marvin.talkback

R. Clegg-Vinell, C. Bailey, and V. Gkatzidou, “Investigating
the appropriateness and relevance of mobile web accessibility
guidelines,” in Proc. 11th Web Conf.,, New York, NY, USA,
2014, pp. 38:1-38:4.

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective auto-
mated testing for android applications,” in Proc. 25th Int. Symp.
Softw. Testing Anal., 2016, pp. 94-105.

T. Su et al., “Guided, stochastic model-based GUI testing of
android apps,” in Proc. 11th Joint Meeting Found. Softw. Eng., 2017,
pp. 245-256.

C. Silva, M. M. Eler, and G. Fraser, “A survey on the tool support
for the automatic evaluation of mobile accessibility,” in Proc. 8th
Int. Conf. Softw. Develop. Technol. Enhancing Accessibility Fighting
Info-Exclusion, 2018, pp. 286-293.

X. Y. Daihua, B. Parmanto, B. E. Dicianno, and G. Pramana,
“Accessibility of mhealth self-care apps for individuals with spina
bifida,” Perspectives Health Information Manage., vol. 12, no. Spring,
2015, Art. no. 1h.

Google-Android-Studio, “Android studio IDE,” 2019. [Online].
Available: https:/ /developer.android.com/studio
Apple-VoiceOver, “VoiceOver on iPhone,” 2019. [Online]. Available:
https:/ /support.apple.com/en-sg/guide/iphone/iph3e2e415f/ios
Android-UIAutomatorViewer, “ Android UIAutomatorViewer,” 2019.
[Online]. Available: https://www.guru99.com/uiautomatorviewer-
tutorial.html

S. Hackett, B. Parmanto, and X. Zeng, “A retrospective look at
website accessibility over time,” Behav. Inf. Technol., vol. 24, no. 6,
pp- 407-417, 2005.

C. Espadinha, L. M. Pereira, F. M. Da Silva, and J. B. Lopes,
“Accessibility of Portuguese public universities” sites,” Disabil.
Rehabil., vol. 33, no. 6, pp. 475-485, 2011.

T. D. Gilbertson and C. H. C. Machin, “Guidelines, icons and mar-
ketable skills: An accessibility evaluation of 100 web development
company homepages,” in Proc. Int. Cross-Disciplinary Conf. Web
Accessibility, New York, NY, USA, 2012, pp. 17:1-17:4.

L. Billingham, “Improving academic library website accessibility
for people with disabilities,” Library Manage., vol. 35, no. 8/9,
pp- 565-581, 2014.

J. Sanchez, M. d. B. Campos, M. Espinoza, and L. B. Merabet,
“Accessibility for people who are blind in public transportation
systems,” in Proce. ACM Conf. Pervasive Ubiquitous Comput.
Adjunct Pub., New York, NY, USA, 2013, pp. 753-756.

G. A. A. De Oliveira, R. W. de Bettio, and A. P. Freire,
“Accessibility of the smart home for users with visual disabilities:
An evaluation of open source mobile applications for home
automation,” in Proc. 15th Braz. Symp. Hum. Factors Comput. Syst.,
New York, NY, USA, 2016, pp. 29:1-29:10.

Atlantic, “A smart city is an accessible city,” 2018. [Online]. Avail-
able: https://www.theatlantic.com/technology/archive/2018/
11/ city-apps-help-and-hinder-disability /574963 /

IBM, “How mobile apps are improving government engagement,”
2016. [Online]. Available: https://www.ibm.com/blogs/think/
2016/01/mobile-app-government/

S. K. Kane, C. Jayant,]. O. Wobbrock, and R. E. Ladner, “Freedom
to roam: A study of mobile device adoption and accessibility for
people with visual and motor disabilities,” in Proc. 11th Int. ACM
SIGACCESS Conf. Comput. Accessibility, 2009, pp. 115-122.

S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,
“Storydroid: Automated generation of storyboard for android
apps,” in Proc. 41st Int. Conf. Softw. Eng., 2019, pp. 596-607.

B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, “UiRef:
Analysis of sensitive user inputs in android applications,” in Proce.
10th ACM Conf. Secur. Privacy Wirel. Mobile Netw., 2017, pp. 23-34.
Google-Play-Store-Bitcoin, “Bitcoin,” 2019. [Online]. Available:
https:/ /play.google.com/store/apps/details?id=de.schildbach.
wallet

Google-Play-Store-Bankdroid, “Bankdroid,” 2019. [Online]. Avail-
able: https:/ /f-droid.org/en/packages/com.liato.bankdroid /

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Google_TalkBack
https://en.wikipedia.org/wiki/Google_TalkBack
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
http://robolectric.org/
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_SG
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_SG
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_SG
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_SG
https://developer.android.com/studio/test/monkey
https://sites.google.com/view/mobile-accessibility/
https://sites.google.com/view/mobile-accessibility/
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities/article-9-accessibility.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities/article-9-accessibility.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities/article-9-accessibility.html
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://developer.android.com/studio
https://support.apple.com/en-sg/guide/iphone/iph3e2e415f/ios
https://www.guru99.com/uiautomatorviewer-tutorial.html
https://www.guru99.com/uiautomatorviewer-tutorial.html
https://www.theatlantic.com/technology/archive/2018/11/city-apps-help-and-hinder-disability/574963/
https://www.theatlantic.com/technology/archive/2018/11/city-apps-help-and-hinder-disability/574963/
https://www.ibm.com/blogs/think/2016/01/mobile-app-government/
https://www.ibm.com/blogs/think/2016/01/mobile-app-government/
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://f-droid.org/en/packages/com.liato.bankdroid/

CHEN ETAL.: ACCESSIBLE OR NOT? AN EMPIRICAL INVESTIGATION OF ANDROID APP ACCESSIBILITY

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
(771

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

Google-Play-Store-ConnectBot, “ConnectBot,” 2019. [Online].
Available: https://play.google.com/store/apps/details?id=org.
connectbot&hl=en_SG

Google-Play-Store-Vespucci, “Vespucci,” 2019. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=de.blau.
android&hl=en_SG

M.-W. U. test, “Mann-Whitney U test,” 2019. [Online]. Available:
https://www.socscistatistics.com/tests/mannwhitney /

F-Droid, “F-Droid,” 2019. [Online]. Available: https:/ /f-droid.org
A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in
Android Apps: State of affairs, sentiments, and ways forward,”
2021. [Online]. Available: https://github.com/Abdulaziz89/
accessibility_eval

w3schools, “alt Attribute in HTML,” 2019. [Online]. Available:
https://www.w3schools.com/tags/att_img_alt.asp

L. Rello and R. Baeza-Yates, “Optimal colors to improve readabil-
ity for people with dyslexia,” in Proc. Text Customization Readabil-
ity Online Symp., 2012.

Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 1013-1024.

L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android
apps,” in Proc. 31st IEEE/ACM Int. Conf. on Automated Softw. Eng.,
2016, pp. 226-237.

S. Chen et al., “Are mobile banking apps secure? what can be
improved?” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2018, pp. 797-802.

S. Chen et al., “An empirical assessment of security risks of global
android banking apps,” in Proc. 42st Int. Conf. Softw. Eng., 2020,
pp- 596-607.

S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in Android apps,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2018, pp. 534-538.

M. Linares-Vésquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated
mobile app testing,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2017, pp. 399-410.

F. Pecorelli, G. Catolino, F. Ferrucci, A. De Lucia, and F. Palomba,
“Testing of mobile applications in the wild: A large-scale empiri-
cal study on android apps,” in Proc. 28th Int. Conf. Program Com-
prehension, 2020, pp. 296-307.

K. Rubinov and L. Baresi, “What are we missing when testing our
android apps?” Computer, vol. 51, no. 4, pp. 60-68, 2018.
Apkmonk, 2019. [Online]. Available: https://www.apkmonk.com
Booking, 2019. [Online]. Available: https://play.google.com/
store/apps/details?id=com.booking&hl=en_SG

Amazon, “Amazon assistant,” 2019. [Online]. Available: https://
play.google.com/store/apps/details?id=com.amazon.aa
Google-Play-Store-Battery, “Battery saver - Bataria energy saver,”
2019. [Online]. Available: https://play.google.com/store/apps/
details?id=com.jappka.bataria&hl=en

Anselm, “Torchie - Volume button torch,” 2019. [Online]. Available:
https:/ /play.google.com/store/apps/ details?id=in.blogspot.
anselmbros.torchie&hl=en

Google-Accessibility-Guideline, “Accessibility = Guideline for
Android apps,” 2019. [Online]. Available: https://support.
google.com/accessibility /android /answer/6376559
Apple-Accessibility-Guideline, “Accessibility Guideline for iOS
apps,” 2019. [Online]. Available: https://developer.apple.com/
design/human-interface-guidelines/accessibility / overview/
introduction/

Google-Play-Store, “Google Play Store,” 2019. [Online]. Available:
https:/ /play.google.com/store?hl=en_US
Google-Mobile-First-Indexing, “Mobile first indexing,” 2019.
[Online]. Available: https://developers.google.com/search/
mobile-sites/mobile-first-indexing

X. Zhang, A. S. Ross, A. Caspi, J. Fogarty, and J. O. Wobbrock,
“Interaction proxies for runtime repair and enhancement of
mobile application accessibility,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., New York, NY, USA, 2017, pp. 6024-6037.

3967

Sen Chen (Member, IEEE) received the PhD
degree in computer science from the School of
Computer Science and Software Engineering,
East China Normal University, China, in June 2019.
He is currently an associate professor with the Col-
lege of Intelligence and Computing,School of
Cybersecurity, Tianjin University, China. He was a
research assistant professor with the School of
Computer Science and Engineering, Nanyang
Technological University, Singapore. He was a
research assistant with NTU from 2016 to 2019

and a research fellow from 2019 to 2020. His research focuses on security
and software engineering, such as mobile security, Al security, open-source
security, and intelligent development and testing. He has authored or coau-
thored broadly in top-tier security, including IEEE S&PF, USENIX Security,
CCS, IEEE TIFS, and IEEE TDSC, and software engineering venues,
including ICSE, FSE, ASE, ACM TOSEM, and IEEE TSE.

A

Chunyang Chen received the bachelor’'s degree
from the Beijing University of Posts and Telecom-
munications (BUPT), China, in June 2014 and
the PhD degree from the School of Computer Sci-
ence and Engineering, Nanyang Technological
University, Singapore. He is currently a lecturer
(assistant professor) with the Faculty of Informa-
tion Technology, Monash University, Australia.
His research focuses on mining software reposi-
tories, text mining, deep learning, and human
computer interaction.

Lingling Fan received BEng and PhD degrees in
computer science from East China Normal Univer-
sity, Shanghai, China in June 2014 and June 2019,
respectively. She is currently an associate profes-
sor with the College of Cyber Science, Nankai Uni-
versity, China. In 2017, she joined Nanyang
Technological University (NTU), Singapore, as a
research assistant, and since 2019, he has been a
research fellow with NTU. Her research focuses on
program analysis and testing, software security,
and Android and application analysis and testing.

She was the recipient of two ACM SIGSOFT Distinguished Paper Awards
atICSE 2018 and ICSE 2021.

Mingming Fan received the PhD degree from
the Department of Computer Science, University
of Toronto, in 2019. He is currently an assistant
professor with Computational Media and Arts
Thrust and an affiliated assistant professor with
the Department of Computer Science and Engi-
neering, The Hong Kong University of Science
and Technology, Guangzhou, China, and Clear
Water Bay campuses, respectively. From 2019 to
2021, he was an assistant professor with the
Rochester Institute of Technology. Dr. Fan leads

the Accessible and Pervasive User EXperience (APEX) Group to
research in the field of human—computer interaction and accessibility.
Specifically, his group applies user-centered design (UCD), Al, ML, VR/
AR, visualization, sensing, and qualitative methods to 1) innovate user
experience (UX) methodologies, 2) tackle aging and accessibility chal-
lenges, and 3) create novel VR/AR experience and sensing techniques.
His research won Best Paper Award, Best Paper Honorable Mention
Award, and Best Artifact Award from top-tier venues in HCI and Accessi-
bility, such as ACM CHI, UbiComp, and ASSETS.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

https://play.google.com/store/apps/details?id=org.connectbot&hl=en_SG
https://play.google.com/store/apps/details?id=org.connectbot&hl=en_SG
https://play.google.com/store/apps/details?id=org.connectbot&hl=en_SG
https://play.google.com/store/apps/details?id=org.connectbot&hl=en_SG
https://play.google.com/store/apps/details?id=de.blau.android&hl=en_SG
https://play.google.com/store/apps/details?id=de.blau.android&hl=en_SG
https://play.google.com/store/apps/details?id=de.blau.android&hl=en_SG
https://play.google.com/store/apps/details?id=de.blau.android&hl=en_SG
https://www.socscistatistics.com/tests/mannwhitney/
https://f-droid.org
https://github.com/Abdulaziz89/accessibility_eval
https://github.com/Abdulaziz89/accessibility_eval
https://www.w3schools.com/tags/att_img_alt.asp
https://www.apkmonk.com
https://play.google.com/store/apps/details?id=com.booking&hl=en_SG
https://play.google.com/store/apps/details?id=com.booking&hl=en_SG
https://play.google.com/store/apps/details?id=com.booking&hl=en_SG
https://play.google.com/store/apps/details?id=com.booking&hl=en_SG
https://play.google.com/store/apps/details?id=com.amazon.aa
https://play.google.com/store/apps/details?id=com.amazon.aa
https://play.google.com/store/apps/details?id=com.amazon.aa
https://play.google.com/store/apps/details?id=com.jappka.bataria&hl=en
https://play.google.com/store/apps/details?id=com.jappka.bataria&hl=en
https://play.google.com/store/apps/details?id=com.jappka.bataria&hl=en
https://play.google.com/store/apps/details?id=com.jappka.bataria&hl=en
https://play.google.com/store/apps/details?id=in.blogspot.anselmbros.torchie&hl=en
https://play.google.com/store/apps/details?id=in.blogspot.anselmbros.torchie&hl=en
https://play.google.com/store/apps/details?id=in.blogspot.anselmbros.torchie&hl=en
https://play.google.com/store/apps/details?id=in.blogspot.anselmbros.torchie&hl=en
https://support.google.com/accessibility/android/answer/6376559
https://support.google.com/accessibility/android/answer/6376559
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://play.google.com/store?hl=en_US
https://play.google.com/store?hl=en_US
https://developers.google.com/search/mobile-sites/mobile-first-indexing
https://developers.google.com/search/mobile-sites/mobile-first-indexing

Xian Zhan received the BEng degree in com-
puter science from Wuhan University, Hubei,
China. She is currently working toward the PhD
degree with the Department of Computing, the
Hong Kong Polytechnic University. Her research
interests include program analysis, mobile pri-
vacy and security, NLP, and machine learning.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Yang Liu graduated in 2005, the Bachelor of
Computing (Hons.) degree from the National Uni-
versity of Singapore (NUS), and the PhD degree
in 2010. He started his post doctoral work with
NUS, MIT, and SUTD. In 2012 fall, he joined
Nanyang Technological University (NTU) as a
Nanyang assistant professor. He is currently a full
professor and the director of the Cybersecurity
Lab, NTU. His research has bridged the gap
between the theory and practical usage of formal
methods and program analysis to evaluate the
design and implementation of software for high assurance and security.
His work led to the development of a state-of-the-art model checker, Pro-
cess Analysis Toolkit (PAT). With more than 20 million Singapore dollar
funding support, he is leading a large research team working on the
state-of-the-art software engineering and cybersecurity problems. He
has authored or coauthored more than 300 publications and six best
paper awards in top-tier conferences and journals. His research interests
include software verification, security, and software engineering. In 2011,
Dr. Liu was the recipient of the Temasek Research Fellowship at NUS to
be the Principal Investigator in the area of cyber security.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:52:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

